• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于种间关系预测评估稻菜轮作区地表水中吡虫啉的生态风险

谭华东 王传咪 吴秋敏 崔艳梅 武春媛

谭华东, 王传咪, 吴秋敏, 崔艳梅, 武春媛. 基于种间关系预测评估稻菜轮作区地表水中吡虫啉的生态风险[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0119
引用本文: 谭华东, 王传咪, 吴秋敏, 崔艳梅, 武春媛. 基于种间关系预测评估稻菜轮作区地表水中吡虫啉的生态风险[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0119
TAN Huadong, WANG Chuanmi, WU Qiumin, CUI Yanmei, WU Chuanyuan. Ecological risk assessment of imidacloprid in surface water fromrice- vegetable rotation areas by using interspecies correlation estimation[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0119
Citation: TAN Huadong, WANG Chuanmi, WU Qiumin, CUI Yanmei, WU Chuanyuan. Ecological risk assessment of imidacloprid in surface water fromrice- vegetable rotation areas by using interspecies correlation estimation[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0119

基于种间关系预测评估稻菜轮作区地表水中吡虫啉的生态风险

doi: 10.16801/j.issn.1008-7303.2022.0119
基金项目: 国家自然科学基金(42107501);海南省自然科学基金(420QN316);中国热带农业科学院环境与植物保护研究所自由选题专项(hzsjy2021001).
详细信息
    作者简介:

    谭华东,tanhuadong1991@163.com

    通讯作者:

    谭华东,tanhuadong1991@163.com

    武春媛,wuchunyuan1981@126.com

  • 中图分类号: TQ450.26;S482.3

Ecological risk assessment of imidacloprid in surface water fromrice- vegetable rotation areas by using interspecies correlation estimation

Funds: the National Natural Science Foundation of China (42107501); Natural Science Foundation of Hainan Province (420QN316); Central Public-Interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences (hzsjy2021001).
  • 摘要: 吡虫啉 (imidacloprid) 在我国 (亚) 热带地表水体中频繁被检出,然而因本土水生生物相关毒理学数据严重缺乏,目前关于其在热带常见作物系统周围水体中生态风险的评估明显不足。本研究基于网络种间关系预测 (web-interspecific correlation estimation,Web-ICE) 结合物种敏感度分布 (species sensitivity distribution,SSD) 曲线,通过获取本地水生生物急性毒性风险阈值——5%物种危害质量浓度 (HC5),利用风险商值法 (risk quotient,RQ),评估了吡虫啉在海南省澄迈县稻菜轮作区地表水中的生态风险。结果表明:海南省澄迈县稻菜轮作区地表水中吡虫啉的HC5值为4.30 μg/L,其中有41.7%水样的RQ值高于1,且中位数和最大浓度对应的RQ值明显高于我国其他区域地表水,表明吡虫啉残留对所研究区域地表水中水生生物具有较高的潜在生态风险;在稻菜轮作过程中,4月份作物播种期 (92.3%水体RQ>1)、蔬菜种植期 (平均RQ=2.53,68%水体RQ>1) 和澄迈中部区域水体中的吡虫啉呈现较高的生态风险,表明吡虫啉长期/脉冲输入造成其生态风险具有显著的时空和作物特征,因此需对该农药在该区域稻菜轮作实践中进行分种植期、分区域合理使用和限制使用。
  • 图  1  采样点分布图

    Figure  1.  The distribution map of sampling sites

    图  2  水体中吡虫啉的物种敏感度分布

    Figure  2.  Species sensitive distributions (SSDs) of imidacloprid in water

    图  3  海南省澄迈县稻菜轮作区地表水体中吡虫啉的生态风险

    a:作物种植类型; b:不同种植时期。

    Figure  3.  Ecological risk of imidacloprid in surface water from rice-vegetable rotation areas in Chengmai County, Hainan

    a: different crops; b: different planting periods.

    图  4  海南省澄迈县稻菜轮作区地表水体中吡虫啉生态风险的空间分布

    a:1月份;b:4月份;c:7月份。

    Figure  4.  Spatial distribution of the ecological risk of imidacloprid in surface water from rice-vegetable rotation areas in Chengmai County, Hainan

    a: January; b: April; c: July.

    表  1  海南省澄迈县采样点位经纬度与当季种植作物种类

    Table  1.   Longitude and latitude of sampling sites and planting crop types in Chengmai, Hainan

    地点    
    Location    
    样品号
    Sample No.
    经度
    Longitude
    纬度
    Latitude
    1月
    January
    4月
    April
    7月
    July
    文音村 Wenyin Cun S1 110.036075 19.928686 BN BN RC
    头才村 Toucai Cun S2 109.936135 19.948167 CC RC SP
    文斗村 Wendou Cun S3 109.913355 19.931278 SP SP FA
    文武村 Wenwu Cun S4 109.905452 19.804324 PP PP RC
    沙土村 Shatu Cun S5 109.964258 19.787034 CC BN RC
    儒俄村 Rue Cun S6 110.051387 19.828242 PP BN RC
    美玉村 Meiyu Cun S7 110.093373 19.8502205 PP PP FA
    君路村 Junlu Cun S8 110.064725 19.804773 PP BN RC
    名山村 Mingshan Cun S9 110.090543 19.792092 PP BN RC
    金安农场 Jinan Farm S10 110.107628 19.77346 PP PP RC
    龙堤村 Longdi Cun S11 110.049833 19.766044 PP BN RC
    瑞溪村 Ruixi Cun S12 110.136257 19.733951 PP PP RC
    白岸村 Baian Cun S13 110.125533 19.754529 PP BN RC
    文安村
    Wenan Cun
    S14 110.164602 19.733759 PP PP RC
    永灵村 Yongling Cun S15 110.206262 19.754073 PP PP RC
    尖岭村 Jianling Cun S16 110.186132 19.63732 CC BN RC
    大催村 Dacui Cun S17 109.992352 19.736656 CC BN BN
    文头山村 Wentoushan Cun S18 109.973945 19.704178 PP BN RC
    长坡仔村 Changpozai Cun S19 110.020922 19.714456 PP BN RC
    长安镇第三农场 The Third Farm in Chang'an Town S20 110.0618892 19.690103 PP PP BN
    高山朗村 Gaoshanliang Cun S21 109.969049 19.67369 PP BN RC
    旺商村 Wangshang Cun S22 109.931073 19.664569 CC BN SP
    大园村 Dayuan Cun S23 109.85237 19.561562 CC BN BN
    德润上村 Derunshang Cun S24 109.997753 19.578183 CC CC RC
    大坡村 Dapo Cun S25 110.108148 19.583729 CC PP FA
    美厚村 Meihou Cun S26 109.908865 19.527497 CC SP BN
    山心村 Shanxin Cun S27 110.05275 19.535583 CC RC SP
    昆仑农场 Kunlun Farm S28 109.81652 19.485867 CC RC SP
    注:RC,水稻;BN,豆角;白菜,CC;SP,地瓜;PP,辣椒;FA;休耕。Note: RC, rice; BN, bean; Chinese cabbage, CC; sweet potato, SP; pepper, PP; Fallow; FA.
    下载: 导出CSV

    表  2  来自美国EPA ECOTOX数据库的吡虫啉急性毒性数据 (EC50或LC50)

    Table  2.   Acute toxicity (EC50 or LC50) of imidacloprid from US-EPA ECOTOX database

    物种名  
    Species name  
    物种属性
    Species category
    物种分类 
    Species group 
    毒性效应终点  
    Toxicological endpoint  
    半数效应浓度
    EC50 or LC50/(mg/L)
    埃及伊蚊 Aedes aegypti L 昆虫 Insects 死亡率 Mortality 0.09
    圆形盘肠溞 Chydorus sphaericus L 甲壳类 Crustaceans 活动抑制/死亡率Immobile/Mortality 1.36
    尖音库蚊 Culex pipiens L 昆虫 Insects 死亡率 Mortality 0.12
    黑斑侧褶蛙 Pelophylax nigromaculatus L 两栖类 Amphibians 死亡率 Mortality 129
    水栉水虱 Asellus aquaticus S 甲壳类 Crustaceans 死亡率 Mortality 1.09
    Carassius auratus S/L 鱼类 Fish 死亡率 Mortality 24.8
    模糊网纹溞 Ceriodaphnia dubia S/L 甲壳类 Crustaceans 死亡率 Mortality 0.0676
    伸展摇蚊 Chironomus tentans S 昆虫 Insects 死亡率 Mortality 0.00426
    美洲钩虾 Hyalella azteca S 甲壳类 Crustaceans 活动抑制/死亡率Immobile/Mortality 0.11
    蓝鳃太阳鱼 Lepomis macrochirus S 鱼类 Fish 活动抑制 Immobile 0.0062
    Cyprinus carpio S/L 鱼类 Fish 死亡率 Mortality 2.94
    大型溞 Daphnia magna S/L 甲壳类 Crustaceans 活动抑制/死亡率Immobile/Mortality 31.09
    虹鳟 Oncorhynchus mykiss S 鱼类 Fish 死亡率 Mortality 156.05
    注:L,本地物种;S,替代物种。数据来源于美国EPA ECOTOX数据库 (https://cfpub.epa.gov/ecotox/search.cfm)。Note: L, local species; S, surrogate species. Data was from EPA ECOTOX database (https://cfpub.epa.gov/ecotox/search.cfm).
    下载: 导出CSV

    表  3  海南省澄迈县本土水生生物的预测急性毒性数据 (EC50或LC50)

    Table  3.   The predicted acute toxicity (EC50 and LC50) for local aquatic organisms in Chengmai County, Hainan

    预测物种
    Predicted
    species
    估算毒性效应
    Estimated toxicity
    (EC50/LC 50)/
    (mg/L)
    95% 置信区间
    95% confident
    interval/(mg/L)
    替代物种
    Surrogate species
    自由度
    Degrees of freedom
    (df, N-2)
    R2均方误差
    Mean square
    error, MSE
    交叉验证
    Cross-validation
    分类距离
    Taxonomic
    distance
    异跳钩虾
    Allorchestes compressa
    2.47 0.46~13.21 模糊网纹溞
    Ceriodaphnia dubia
    2 0.9226 0.08 100 5
    蚤状溞
    Daphnia pulex
    0.10 0.06~0.15 模糊网纹溞
    Ceriodaphnia dubia
    3 0.9981 0.02 100 2
    食蚊鳉
    Gambusia affinis
    183.75 8.88~3800.43 虹鳟
    Oncorhynchus mykiss
    3 0.9146 0.77 40 4
    钩虾属
    Gammarus sp.
    0.09 0.03~0.22 模糊网纹溞
    Ceriodaphnia dubia
    5 0.9384 0.17 86 5
    椎实螺
    Lymnaea stagnalis
    34.66 15.65~76.76 大型溞
    Daphnia magna
    7 0.9620 0.19 78 6
    罗非鱼
    Oreochromis mossambicus
    11.72 5.85~234.9
    Carassius auratus
    3 0.84925 0.23 80 4
    锯顶低额溞
    Simocephalus serrulatus
    31.59 4.10~243.39 大型溞
    Daphnia magna
    13 0.8832 0.22 87 2
    下载: 导出CSV
  • [1] ZHANG C, TIAN D, YI X H, et al. Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China[J]. Chemosphere, 2019, 217: 437-446. doi: 10.1016/j.chemosphere.2018.11.024
    [2] YI X H, ZHANG C, LIU H B, et al. Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China[J]. Environ Pollut, 2019, 251: 892-900. doi: 10.1016/j.envpol.2019.05.062
    [3] TAN H D, ZHANG H J, WU C Y, et al. Pesticides in surface waters of tropical river basins draining areas with rice-vegetable rotations in Hainan, China: Occurrence, relation to environmental factors, and risk assessment[J]. Environ Pollut, 2021, 283: 117100. doi: 10.1016/j.envpol.2021.117100
    [4] SATIROFF J A, MESSER T L, MITTELSTET A R, et al. Pesticide occurrence and persistence entering recreational lakes in watersheds of varying land uses[J]. Environ Pollut, 2021, 273: 116399. doi: 10.1016/j.envpol.2020.116399
    [5] MORRISSEY C A, MINEAU P, DEVRIES J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review[J]. Environ Int, 2015, 74: 291-303. doi: 10.1016/j.envint.2014.10.024
    [6] STEPHEN C E, MOUNT D I, HANSEN D J, et al. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[S]. Washington DC: United States Environmental Protection Agency, Office of Research and Development, 1985.
    [7] CARR G J, BELANGER S E. SDDs revisited: part I-a framework for sample size guidance on species sensitivity distribution analysis[J]. Environ Toxicol Chem, 2019, 38(7): 1514-1525. doi: 10.1002/etc.4445
    [8] BEJARANO A C, RAIMONDO S, BARRON M G. Framework for optimizing selection of interspecies correlation estimation models to address species diversity and toxicity gaps in an aquatic database[J]. Environ Sci Technol, 2017, 51(14): 8158-8165. doi: 10.1021/acs.est.7b01493
    [9] SHEN C, PAN X L, WU X H, et al. Ecological risk assessment for difenoconazole in aquatic ecosystems using a web-based interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) model[J]. Chemosphere, 2022, 289: 133236. doi: 10.1016/j.chemosphere.2021.133236
    [10] WILLMING M M, LILAVOIS C R, BARRON M G, et al. Acute toxicity prediction to threatened and endangered species using interspecies correlation estimation (ICE) models[J]. Environ Sci Technol, 2016, 50(19): 10700-10707. doi: 10.1021/acs.est.6b03009
    [11] RAIMONDO S, BARRON M G. Application of interspecies correlation estimation (ICE) models and QSAR in estimating species sensitivity to pesticides[J]. SAR QSAR Environ Res, 2020, 31(1): 1-18. doi: 10.1080/1062936X.2019.1686716
    [12] 林珠凤, 吉训聪, 潘飞, 等. 海南省冬季瓜菜农药使用现状调查与分析[J]. 昆虫学报, 2016, 59(11): 1282-1290. doi: 10.16380/j.kcxb.2016.11.017

    LIN Z F, JI X C, PAN F, et al. Investigation and analysis of the current status of pesticide application in winter melon and vegetable pest control in Hainan Province, Southern China[J]. Acta Entomol Sin, 2016, 59(11): 1282-1290. doi: 10.16380/j.kcxb.2016.11.017
    [13] TAN H D, LI Q F, ZHANG H J, et al. Pesticide residues in agricultural topsoil from the Hainan tropical riverside basin: determination, distribution, and relationships with planting patterns and surface water[J]. Sci Total Environ, 2020, 722: 137856. doi: 10.1016/j.scitotenv.2020.137856
    [14] HERZON I, HELENIUS J. Agricultural drainage ditches, their biological importance and functioning[J]. Biol Conserv, 2008, 141(5): 1171-1183. doi: 10.1016/j.biocon.2008.03.005
    [15] CHAGNON M, KREUTZWEISER D, MITCHELL E A D, et al. Risks of large-scale use of systemic insecticides to ecosystem functioning and services[J]. Environ Sci Pollut Res, 2015, 22(1): 119-134. doi: 10.1007/s11356-014-3277-x
    [16] MENON M, MOHANRAJ R, SUJATA W. Monitoring of neonicotinoid pesticides in water-soil systems along the agro-landscapes of the Cauvery delta region, south India[J]. Bull Environ Contam Toxicol, 2021, 106(6): 1065-1070. doi: 10.1007/s00128-021-03233-4
    [17] US EPA. Web-based Interspecies correlation estimation (Web-ICE) for acute toxicity: user manual[DB/OL]. (2016-06) [2022-04-15]. https://www3.epa.gov/webice/documents/WebICE_User_manual.pdf.
    [18] 冯承莲, 付卫强, Dyer Scott, 等. 种间关系预测 (ICE) 模型在水质基准研究中的应用[J]. 生态毒理学报, 2015, 10(1): 81-87.

    FENG C L, FU W Q, SCOTT D, et al. Application of interspecies correlation estimation (ICE) models in the study of water quality criteria[J]. Asian J Ecotoxicol, 2015, 10(1): 81-87.
    [19] European Communities (EC). Technical guidance document on risk assessment[S/OL]. [2022-04-15]. https://publications.jrc. ec.europa.eu/repository/bitstream/JRC23785/EUR 20418 EN-1.pdf.
    [20] European Commission (EC). Common implementation strategy for the Water Framework Directive (2000/60/EC)[S/OL]. [2022-04-15]. https://ec.europa.eu/environment/water/water-framework/pdf/groundwater_report.pdf
    [21] WANG T L, ZHONG M M, LU M L, et al. Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: a case study near Taihu Lake, China[J]. Sci Total Environ, 2021, 782: 146826. doi: 10.1016/j.scitotenv.2021.146826
    [22] SÁNCHEZ-BAYO F, BASKARAN S, KENNEDY I R. Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture[J]. Agric Ecosyst Environ, 2002, 91(1-3): 37-57. doi: 10.1016/S0167-8809(01)00258-4
    [23] 王晓南, 闫振广, 刘征涛, 等. 实测/预测辽河铬 (Ⅵ) 水生生物基准与风险评估[J]. 环境科学, 2015, 36(7): 2414-2421.

    WANG X N, YAN Z G, LIU Z T, et al. Measured and predicted aquatic life criteria and risk assessment of chromium(Ⅵ) in Liaohe River[J]. Environ Sci, 2015, 36(7): 2414-2421.
    [24] RABY M, NOWIERSKI M, PERLOV D, et al. Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates[J]. Environ Toxicol Chem, 2018, 37(5): 1430-1445. doi: 10.1002/etc.4088
    [25] 中国生物志库[EB/OL]. [2021-12-20]. https://species.sciencereading.cn/biology/v/botanyIndex/122/DW.html.
    [26] 王鹏, 陈积明, 刘维. 海南主要水生生物[M]. 北京: 海洋出版社, 2014.

    WANG P, CHEN J M, LIU W. Main aquatic organisms in Hainan[M]. Beijing: Ocean Press, 2014.
    [27] CHEN Y C, ZANG L, LIU M D, et al. Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China[J]. Environ Int, 2019, 127: 550-557. doi: 10.1016/j.envint.2019.04.010
    [28] LIU Z K, CUI S, ZHANG L M, et al. Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, Northeast China[J]. Environ Sci Ecotechnol, 2021, 8: 100128. doi: 10.1016/j.ese.2021.100128
    [29] HE X P, CHEN J H, LI X T, et al. Pollution status, influencing factors and environmental risks of neonicotinoids, fipronil and its metabolites in a typical semi-closed bay in China[J]. Environ Pollut, 2021, 291: 118210. doi: 10.1016/j.envpol.2021.118210
    [30] MAHAI G G, WAN Y J, XIA W, et al. Neonicotinoid insecticides in surface water from the central Yangtze River, China[J]. Chemosphere, 2019, 229: 452-460. doi: 10.1016/j.chemosphere.2019.05.040
    [31] XU M J, HUANG H T, LI N, et al. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China[J]. Ecotoxicol Environ Saf, 2019, 175: 289-298. doi: 10.1016/j.ecoenv.2019.01.131
    [32] XU L, GRANGER C, DONG H Y, et al. Occurrences of 29 pesticides in the Huangpu River, China: Highest ecological risk identified in Shanghai metropolitan area[J]. Chemosphere, 2020, 251: 126411. doi: 10.1016/j.chemosphere.2020.126411
    [33] ZHOU Y T, WU J X, WANG B, et al. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China[J]. Environ Pollut, 2020, 265: 114953. doi: 10.1016/j.envpol.2020.114953
    [34] TOMALSKI M, LEIMKUEHLER W, SCHAL C, et al. Metabolism of imidacloprid in workers of Reticulitermes flavipes (Isoptera: Rhinotermitidae)[J]. Ann Entomol Soc Am, 2010, 103(1): 84-95. doi: 10.1603/008.103.0111
    [35] SUCHAIL S, GUEZ D, BELZUNCES L P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera[J]. Environ Toxicol Chem, 2001, 20(11): 2482-2486. doi: 10.1002/etc.5620201113
    [36] HUANG A N, VAN DEN BRINK N W, BUIJSE L, et al. The toxicity and toxicokinetics of imidacloprid and a bioactive metabolite to two aquatic arthropod species[J]. Aquat Toxicol, 2021, 235: 105837. doi: 10.1016/j.aquatox.2021.105837
    [37] MA C, LIU X G, WU X H, et al. Kinetics, mechanisms and toxicity of the degradation of imidaclothiz in soil and water[J]. J Hazard Mater, 2021, 403: 124033. doi: 10.1016/j.jhazmat.2020.124033
    [38] HUSSAIN S, HARTLEY C J, SHETTIGAR M, et al. Bacterial biodegradation of neonicotinoid pesticides in soil and water systems[J]. FEMS Microbiol Lett, 2016, 363(23): fnw252. doi: 10.1093/femsle/fnw252
  • 加载中
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 录用日期:  2022-09-14
  • 网络出版日期:  2022-10-14

目录

    /

    返回文章
    返回