• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苯醚甲环唑在芹菜和土壤中的残留行为及风险评估

陈武瑛 陈昂 李凯龙 罗香文 熊浩 刘志邦 宋增收 刘勇

陈武瑛, 陈昂, 李凯龙, 罗香文, 熊浩, 刘志邦, 宋增收, 刘勇. 苯醚甲环唑在芹菜和土壤中的残留行为及风险评估[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0120
引用本文: 陈武瑛, 陈昂, 李凯龙, 罗香文, 熊浩, 刘志邦, 宋增收, 刘勇. 苯醚甲环唑在芹菜和土壤中的残留行为及风险评估[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0120
CHEN Wuying, CHEN Ang, LI Kailong, LUO Xiangwen, XIONG Hao, LIU Zhibang, SONG Zengshou, LIU Yong. Residue behavior and risk assessment of difenoconazole in celery and soil[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0120
Citation: CHEN Wuying, CHEN Ang, LI Kailong, LUO Xiangwen, XIONG Hao, LIU Zhibang, SONG Zengshou, LIU Yong. Residue behavior and risk assessment of difenoconazole in celery and soil[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0120

苯醚甲环唑在芹菜和土壤中的残留行为及风险评估

doi: 10.16801/j.issn.1008-7303.2022.0120
基金项目: 长沙市自然科学基金(kq2202340);国家重点研发计划(2016YFD0200200).
详细信息
    作者简介:

    陈武瑛,chenwuying333@126.com

    通讯作者:

    刘勇,liuyong@hunaas.cn

  • 中图分类号: S482.2;TQ450.26

Residue behavior and risk assessment of difenoconazole in celery and soil

Funds: the Natural Science Foundation of Changsha (kq2202340); National Key Research and Development Program of China (2016YFD0200200).
  • 摘要: 在湖南和山东开展了10%苯醚甲环唑水分散粒剂在芹菜上的残留田间试验,在室内进行了土壤生物的急性毒性试验。基于苯醚甲环唑的残留试验数据和毒性端点值,就苯醚甲环唑对中国不同人群的长期及短期膳食摄入风险和对土壤生物的环境风险进行了评估。结果表明:苯醚甲环唑在芹菜叶、茎和土壤中的消解半衰期分别为5.2~8.8 d、8.0~8.2 d和13.6~15.0 d。苯醚甲环唑按推荐剂量有效成分120 g/hm2喷雾施药3次,施药间隔期5 d,距最后一次施药5 d收获时苯醚甲环唑在芹菜叶片中的残留量高于MRL (3 mg/kg,中国),在茎和整株芹菜中的残留量均低于MRL。普通人群和1~6岁儿童的短期摄入风险商RQa值分别为0.09和0.10;对于不同人群,芹菜中苯醚甲环唑对长期膳食摄入风险商的贡献率 (RQc%) 为9.4%~19.8%。10%苯醚甲环唑水分散粒剂对环境中的土壤生物风险商值RQe为0.368~0.890,不会产生初级急性风险。
  • 图  1  苯醚甲环唑在芹菜叶、茎和土中的原始沉积量

    Figure  1.  The original sedimentation of difenoconazole in celery leaf,stem and soil

    表  1  方法的线性方程、决定系数和基质效应(线性范围:0.001~1 mg/L)

    Table  1.   Linear equations, determination coefficients and matrix effects of the established method (Linear range: 0.001-1 mg/L)

    基质
    Matrix 
    线性方程
    Linear equations
    决定系数
    R2
    基质效应
    Me /%
    溶剂 Solvent y = 19 820 226x + 41 848 0.9995
    芹菜叶 Celery leaf y = 19 576 046x + 193 578 0.9991 −1.2
    芹菜茎 Celery stem y = 19 649 452x + 129 664 0.9996 −0.9
    土壤 Soil y = 18 740 875x + 44 411 0.9998 −5.4
    下载: 导出CSV

    表  2  苯醚甲环唑在芹菜叶、茎和土壤中的添加平均回收率和相对标准偏差

    Table  2.   The recoveries and RSD of difenoconazole in celery leaf, stem and soil

    添加水平
    Spiked level/(mg/kg)
    叶 Leaf 茎 Stem 土壤 Soil
    平均回收率
    Average recovery/%
    RSD/% 平均回收率
    Average recovery/%
    RSD/% 平均回收率
    Average recovery/%
    RSD/%
    0.01 93 5.3 84 9.5 92 5.6
    0.1 108 9.8 88 2.2 98 7.7
    1 101 4.6 99 5.7 95 8.6
    201) 96 9.2 96 9.0 96 6.5
    注:1) 稀释4倍后进样。Note:1) Dilution 4 times before injection.
    下载: 导出CSV

    表  3  苯醚甲环唑在芹菜叶、茎和土壤中的残留量及消解参数(n=3)

    Table  3.   The residues and dissipation parameters of difenoconazole in celery leaf, stem and soil (n=3)

    采样时间
    Sampling time/d
    叶 Leaf/(mg/kg) 茎 Stem/(mg/kg) 土壤 Soil/(mg/kg)
    湖南
    Hunan
    山东
    Shangdong
    湖南
    Hunan
    山东
    Shangdong
    湖南
    Hunan
    山东
    Shangdong
    0 (2 h) 17.3 ± 0.86 15.6 ± 0.82 3.4 ± 0.50 2.7 ± 0.46 3.0 ± 0.48 1.8 ± 0.34
    1 13.3 ± 0.45 9.5 ± 0.36 1.8 ± 0.20 1.2 ± 0.11 2.6 ± 0.74 1.1 ± 0.08
    2 5.3 ± 0.50 7.9 ± 0.33 2.8 ± 0.30 0.9 ± 0.11 2.0 ± 0.18 2.0 ± 0.45
    3 4.4 ± 0.32 8.1 ± 0.79 2.3 ± 0.17 1.2 ± 0.08 2.3 ± 0.74 1.4 ± 0.56
    5 3.0 ± 0.16 8.8 ± 0.94 1.4 ± 0.09 0.60 ± 0.03 1.6 ± 0.41 1.2 ± 0.07
    7 1.9 ± 0.06 4.3 ± 0.43 1.3 ± 0.07 0.79 ± 0.04 1.9 ± 0.24 1.0 ± 0.19
    14 0.90 ± 0.01 2.7 ± 0.14 0.63 ± 0.04 0.48 ± 0.07 1.2 ± 0.13 0.62 ± 0.10
    28 0.31 ± 0.03 1.4 ± 0.04 0.28 ± 0.02 0.13 ± 0.04 0.64 ± 0.11 0.48 ± 0.04
    消解动态方程 Dissipation equation ct = 8.4e−0.1325t ct = 10.6e−0.0786t ct = 2.6e−0.0849t ct = 1.4−0.0868t ct = 2.6e−0.0511t ct = 1.5e−0.0463t
    相关系数 r −0.9286 −0.9464 −0.9621 −0.9312 −0.9706 −0.8943
    半衰期 Half-life/d 5.2 8.8 8.2 8.0 13.6 15.0
    下载: 导出CSV

    表  4  中国不同人群对芹菜的平均消费量和长期膳食摄入风险商贡献率

    Table  4.   Mean consumption and RQC% of difenoconazole for different populations in China

    年龄
    Age
    平均消费量
    Mean consumption/(g/kg bw·d)
    风险商贡献率
    RQc%
    0~35 月 0-35 months 1.5097 18.1
    3~5 岁 3-5 years 1.6497 19.8
    4~16 岁 4-16 years 1.2791 15.3
    15~49 岁 15-49 years 0.798 9.6
    50~74 岁 50-74 years 0.7863 9.4
    >75 岁 >75 years 0.8110 9.7
    下载: 导出CSV

    表  5  10%苯醚甲环唑WG的环境风险评估

    Table  5.   The environmental risk assessment of 10% difenoconazole WG

    物种
    Species
    时间
    Time/d
    实测暴露量
    MEC/(mg/kg)
    毒性端点 (有效成分)
    Toxicity end point, a.i./(mg/kg)
    不确定性因子
    UF
    PNEC, a.i./
    (mg/kg)
    环境风险商
    RQe
    蚯蚓
    Eisenia foetida
    7 3.0 42.9 10 4.29 0.699
    14 3.0 33.7 10 3.37 0.890
    土壤微生物 Soil microorganism 28 3.0 8.16 1 8.16 0.368
    下载: 导出CSV
  • [1] GAO M L, SONG W H, ZHANG J Y, et al. Effect on enzymes and histopathology in earthworm (Eisenia foetida) induced by triazole fungicides[J]. Environ Toxicol Pharmacol, 2013, 35(3): 427-433. doi: 10.1016/j.etap.2013.02.003
    [2] 王飞菲, 赵恒科, 张剑峰, 等. 苯醚甲环唑对温室土壤微生物及土壤酶活性的影响[J]. 水土保持学报, 2015, 29(2): 299-304. doi: 10.13870/j.cnki.stbcxb.2015.02.056

    WANG F F, ZHAO H K, ZHANG J F, et al. Effects of difenoconazole on microorganisms and enzymes activities in greenhouse soil[J]. J Soil Water Conserv, 2015, 29(2): 299-304. doi: 10.13870/j.cnki.stbcxb.2015.02.056
    [3] 雷雨豪, 张翠芳, 王壮, 等. 环境激素农药三唑类杀菌剂在土壤中的残留与风险评价[J]. 农药, 2019, 58(9): 660-663. doi: 10.16820/j.cnki.1006-0413.2019.09.010

    LEI Y H, ZHANG C F, WANG Z, et al. Residues and risk assessment of environmental hormone pesticide triazole fungicides in soil[J]. Agrochemicals, 2019, 58(9): 660-663. doi: 10.16820/j.cnki.1006-0413.2019.09.010
    [4] 程禹, 邵辉, 刘春艳, 等. 77%氢氧化铜水分散粒剂对6种陆生生物的毒性及环境风险评估[J]. 生态毒理学报, 2021, 16(5): 364-376.

    CHENG Y, SHAO H, LIU C Y, et al. Actute toxicity and environmental risk assessment of 77% copper hydroxide aqueous dispersion granules for six terrestrial organisms[J]. Asian J Ecotoxicol, 2021, 16(5): 364-376.
    [5] VAŠÍČKOVÁ J, HVĚZDOVÁ M, KOSUBOVÁ P, et al. Ecological risk assessment of pesticide residues in arable soils of the Czech Republic[J]. Chemosphere, 2019, 216: 479-487. doi: 10.1016/j.chemosphere.2018.10.158
    [6] 姜林杰, 耿岳, 王璐, 等. 设施番茄和黄瓜田土壤中农药残留及其对蚯蚓的急性风险[J]. 农业环境科学学报, 2019, 38(10): 2278-2286. doi: 10.11654/jaes.2019-0275

    JIANG L J, GENG Y, WANG L, et al. Acute risks of pesticide residues in greenhouse tomato and cucumber field soil to earthworms[J]. J Agro Environ Sci, 2019, 38(10): 2278-2286. doi: 10.11654/jaes.2019-0275
    [7] 李艳杰, 喻歆茹, 余婷, 等. 苯醚甲环唑在芹菜体系中的沉积与残留规律[J]. 现代农药, 2020, 19(2): 37-40. doi: 10.3969/j.issn.1671-5284.2020.02.008

    LI Y J, YU X R, YU T, et al. Deposition and residue of difenoconazole in greenhouse celerysoil[J]. Mod Agrochem, 2020, 19(2): 37-40. doi: 10.3969/j.issn.1671-5284.2020.02.008
    [8] 中国农药信息网. 农药登记数据[DB/OL]. [2021-12-14]. http://www.icama.org.cn/hysj/index.jhtml.

    China pesticide information network. Pesticide registration data[DB/OL]. [2021-12-14]. http://www.chinapesticide.org.cn/yxcftozw.jhtml.
    [9] 胡家萌. 3种农药在叶菜类蔬菜中的残留与消解规律研究[D]. 南京: 南京农业大学, 2019

    HU J M. Study on residues and digestion of three kinds of pesticides in leafy vegetables[D]. Nanjing: Nanjing Agricultural University, 2019.
    [10] 汤晗, 吴园园, 成亚菲, 等. 浙江省芹菜中农药多残留水平及累积急性膳食摄入风险初评[J]. 农药学学报, 2021, 23(5): 947-955. doi: 10.16801/j.issn.1008-7303.2021.0092

    TANG H, WU Y Y, CHENG Y F, et al. Pesticides residue levels and cumulative acute dietary intake risk assessment of celery in Zhejiang Province[J]. Chin J Pestic Sci, 2021, 23(5): 947-955. doi: 10.16801/j.issn.1008-7303.2021.0092
    [11] 焦晓伟. 芹菜农药残留检测及膳食摄入风险评估[J]. 食品安全导刊, 2021(25): 79-82. doi: 10.16043/j.cnki.cfs.2021.25.046

    JIAO X W. Detection of pesticide residues in celery and risk assessment of dietary intake[J]. China Food Saf Mag, 2021(25): 79-82. doi: 10.16043/j.cnki.cfs.2021.25.046
    [12] CHEN L P, WU C X, XU M F, et al. Assessment of carbendazim residues and safety in celery under different cultivation conditions[J]. Bull Environ Contam Toxicol, 2021, 107(2): 276-280. doi: 10.1007/s00128-020-02785-1
    [13] GUO C J, LI G, LIN Q J, et al. Residual dynamics and dietary exposure risk of dimethoate and its metabolite in greenhouse celery[J]. Peer J, 2021, 9: e10789. doi: 10.7717/peerj.10789
    [14] BAI A J, CHEN A, CHEN W Y, et al. Study on degradation behaviour, residue distribution, and dietary risk assessment of propiconazole in celery and onion under field application[J]. J Sci Food Agric, 2021, 101(5): 1998-2005. doi: 10.1002/jsfa.10817
    [15] 初春, 王志华, 秦冬梅, 等. 苯醚甲环唑在芹菜及其土壤中的残留测定和消解动态研究[J]. 中国科学:化学, 2011, 41(1): 129-135. doi: 10.1360/032010-100

    CHU C, WANG Z H, QIN D M, et al. Study on determination and dynamics of difenoconazole residues in celery and soil[J]. Sci Sin Chimica, 2011, 41(1): 129-135. doi: 10.1360/032010-100
    [16] 化学农药环境安全评价试验准则: GB/T 31270—2014[S]. 2014.

    Test guidelines on environmental safety assessment for chemical pesticides: GB/T 31270—2014 [S]. 2014.
    [17] WHO. Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed [EB/OL]. [2022-08-29]. https://www.fao.org/agriculture/crops/publications/detail/en/item.
    [18] WHO. IESTI calculation data overviews. [DB/OL]. [2021-12-12] . http://www.who.int/foodsafety/areas_work/chemical-risks/gems-food/en.
    [19] WHO. Food safety collaborative platform[EB/OL]. [2022-08-29]. https://apps.who.int/foscollab/Download/DownloadConso
    [20] 中华人民共和国农业部. 食品中农药残留风险评估指南[Z]. 中华人民共和国农业部公告第2308号. (2015-10-08). http://www.chinapesticide.org.cn/ssfxpg/9555.jhtml

    Ministry of Agriculture of the People's Republic of China. Guide for risk assessment of pesticide residues in food[Z]. Announcement of the Ministry of Agriculture of the People's Republic of China No. 2308. (2015-10-08).
    [21] 农药登记环境风险评估指南. 第8部分. 土壤生物: NY/T 2882.8—2017[S]. 北京: 中华人民共和国农业部, 2017.

    Guidance on environmental risk assessment for pesticide registration. Part 8. soil organisms: NY/T 2882.8—2017 [S]. Beijing: Ministry of Agriculture of the People's Republic of China, 2017 .
    [22] 唐红霞, 黄佳庆, 孙强, 等. QuEChERS-高效液相色谱-串联质谱法检测氟吡菌胺及其代谢物和霜霉威在叶用莴苣中的残留及消解动态[J]. 农药学学报, 2021, 23(2): 388-394. doi: 10.16801/j.issn.1008-7303.2021.0026

    TANG H X, HUANG J Q, SUN Q, et al. Residue and dissipation of fluopicolide, its metabolite and propamocarb in the leaf lettuce using a modified QuEChERS method and HPLC-MS/MS[J]. Chin J Pestic Sci, 2021, 23(2): 388-394. doi: 10.16801/j.issn.1008-7303.2021.0026
    [23] ZHANG Y, WU X H, LI X B, et al. A fast and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method for determining mefentrifluconazole in plant- and animal-derived foods[J]. Food Addit Contam. Part A. Chem Anal Control Expo Risk Assess, 2019, 36(9): 1348-1357. doi: 10.1080/19440049.2019.1628361
    [24] European Commision. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. 2019. [2022-11-8]. https://www.eurl-pesticides.eu/docs/public/ tmplt_article.asp CntID=727.
    [25] 农作物中农药残留试验准则: NY/T 788—2018[S]. 北京: 中国农业出版社, 2018.

    Guideline for the testing of pesticide residues in crops. NY/T 788 —2018[S]. Beijing: Chinese Agriculture Press, 2018.
    [26] 周启圳, 何翎, 刘丰茂, 等. 嘧菌酯和丙环唑在大豆上残留分布及降解动态研究[J/OL]. 农业资源与环境学报.[2021-12-12]. https: //doi. org/10.13254/j. jare. 2021.0614.

    ZHOU Q Z, HE L, LIU F M, et al. Residue distribution and degradation dynamics of azoxystrobin and propiconazole onsoybean crops[J/OL]. J Agricultural Res Environ. [2021-12-12]. https://doi.org/10.13254/j.jare.2021.0614.
    [27] 高美静, 卢莉娜, 仲建锋, 等. 代森锌及其代谢物乙撑硫脲在食用百合上的残留行为与膳食风险评估[J/OL]. 农药学学报.[2022-11-8]. https://doi.org/10.16801/j.issn.1008-7303.2022.0075.

    GAO M J, LU L N, ZHONG J F, et al. Residue behavior and dietary risk assessment of zineb and its metabolite ethylene thiourea in edible lily [J/OL]. Chin J Pestic Sci. [2022-11-8]. https://doi.org/10.16801/j.issn.1008-7303.2022.0075.
    [28] 林永熙, 潘灿平, 程海燕, 等. 吡唑醚菌酯和戊唑醇在桃上的残留与膳食风险评估[J/OL]. 农药学学报.[2022-11-8]. https://doi.org/10.16801/j.issn.1008-7303.2022.0073

    LIN Y X, PAN C P, CHENG H Y, et al. Residue and dietary exposure risk assessment of pyraclostrobin and tebuconazole on peach[J/OL]. Chin J Pestic Sci. [2022-11-8]. https://doi.org/10.16801/j.issn.1008-7303.2022.0073
    [29] 丁悦, 孙星, 汪佳蕾, 等. 露地和大棚条件下啶虫脒在黄瓜和土壤中的残留及消解动态[J]. 农药学学报, 2014, 16(1): 110-114. doi: 10.3969/j.issn.1008-7303.2014.01.19

    DING Y, SUN X, WANG J L, et al. Residue and dissipation of acetamiprid in cucumber and soil under open field and greenhouse conditions[J]. Chin J Pestic Sci, 2014, 16(1): 110-114. doi: 10.3969/j.issn.1008-7303.2014.01.19
    [30] WU P W, HOU R L, MA Y J. Possible origins of pesticide residues incelery intake and regulation policy[J]. Pestic Sci Admin, 2010: 35-37.
    [31] WHO. Inventory of evaluations performed by the Joint Meeting on Pesticide Residues (JMPR) [DB/OL]. [2021-12-12]. http://apps.who.int/pesticide-residues-jmpr-database.
    [32] 食品安全国家标准 食品中农药最大残留限量: GB 2763—2021 [S]. 北京: 中国标准出版社, 2021.

    National food safety standard-Maximum residue limits for pesticides in food: GB 2763—2021[S]. Beijing: Standards Press of China, 2021.
    [33] LI C J, ZHU H M, LI C Y, et al. The present situation of pesticide residues in China and their removal and transformation during food processing[J]. Food Chem, 2021, 354: 129552. doi: 10.1016/j.foodchem.2021.129552
    [34] 乔雄梧. 食品中农药残留膳食暴露评估若干问题探讨[J]. 农药学学报, 2020, 22(5): 727-733. doi: 10.16801/j.issn.1008-7303.2020.0139

    QIAO X W. Some considerations on dietary exposure assessment of pesticide residues in food[J]. Chin J Pestic Sci, 2020, 22(5): 727-733. doi: 10.16801/j.issn.1008-7303.2020.0139
    [35] European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment of the active substance difenoconazole[J]. EFSA J, 2011, 9(1): 1967.
    [36] 张国福, 李本杰, 王金花, 等. 不同剂型苯醚甲环唑和嘧菌酯及其原药对斑马鱼的急性毒性评价[J]. 农业环境科学学报, 2014, 33(11): 2125-2130. doi: 10.11654/jaes.2014.11.008

    ZHANG G F, LI B J, WANG J H, et al. Acute toxicity of technical material and different formulations of difenoconazole and azoxystrobin to zebrafish[J]. J Agro Environ Sci, 2014, 33(11): 2125-2130. doi: 10.11654/jaes.2014.11.008
    [37] 才冰, 袁善奎, 曲甍甍, 等. 360种农药制剂对斑马鱼的急性毒性研究[J]. 农药科学与管理, 2011, 32(1): 31-34. doi: 10.3969/j.issn.1002-5480.2011.01.012

    CAI B, YUAN S K, QU M M, et al. Study on the acute toxicity of 360 formulated pesticides to zebrafish[J]. Pestic Sci Admin, 2011, 32(1): 31-34. doi: 10.3969/j.issn.1002-5480.2011.01.012
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-09-29
  • 网络出版日期:  2022-10-13

目录

    /

    返回文章
    返回