Antifungal activity of the compound of triticonazole and phenamacril against Fusarium fujikuroi
-
摘要: 采用菌丝生长速率法,测定了灭菌唑对水稻恶苗病菌的毒力,测得灭菌唑对10株水稻恶苗病菌的EC50值范围为0.0664~0.7661 μg/mL。采用有效成分质量浓度分别为60、120和240 μg/mL的25 g/L灭菌唑种子处理悬浮剂处理水稻种子后,对水稻发芽率、株高、鲜重均无影响。表明灭菌唑对水稻恶苗病菌具有较好的抑制活性,且对水稻安全,可用于水稻恶苗病的化学防控。氰烯菌酯对10株水稻恶苗病菌的EC50值范围为0.0076~0.2629 μg/mL。将氰烯菌酯和灭菌唑分别按质量比4 : 1、3 : 1、2 : 1、1 : 1、1 : 2、1 : 3和1 : 4复配,测定了复配药剂对水稻恶苗病菌的联合毒力,所得增效系数在0.5~1.5之间,均为相加作用。研究表明,将氰烯菌酯与灭菌唑复配后施用,不仅能显著降低单剂的使用剂量,且能降低氰烯菌酯对病原菌群体的选择压力,延缓抗药性的发生和发展速度,保障病害防效和水稻生产安全。Abstract: In this study, the mycelial growth rate method was used to determine the antifungal activity of triticonazole against Fusarium fujikuroi, and the EC50 values of triticonazole against 10 strains of F. fujikuroi ranged from 0.0664 μg/mL to 0.7661 μg/mL. After seed treatment with 60, 120, and 240 μg/mL active concentrations of 25 g/L triticonazole suspension concentrate, the germination rate, plant height, and fresh weight of rice were not affected. The results indicated that triticonazole not only has good antifungal activity against F. fujikuroi, but also has good security for rice, and can be used to control rice bakanae disease. The EC50 values of phenamacril against 10 strains of F. fujikuroi ranged from 0.0076 to 0.2629 μg/mL. The joint toxicities of phenamacril and triticonazole at the ratios of 4 : 1, 3 : 1, 2 : 1, 1 : 1, 1 : 2, 1 : 3, and 1 : 4 against F. fujikuroi were determined. The result showed the synergistic ratio ranged from 0.5 to 1.5, indicating that the combinations of phenamacril and triticonazole exhibited an additive effect on the inhibition of F. fujikuroi mycelial growth. This study indicated the combinations of phenamacril and triticonazole not only decrease the use dosage of a single component significantly but also reduce the selective pressure of F. fujikuroi populations to phenamacril and delay the resistance development, ensuring the control efficacy of rice bakanae disease and safe production of rice.
-
Key words:
- Fusarium fujikuroi /
- triticonazole /
- phenamacril /
- joint toxicity /
- safety /
- synergistic ratio
-
表 1 水稻恶苗病菌敏感性测定试验中氰烯菌酯和灭菌唑复配药剂的浓度梯度
Table 1. Concent ration gradients of the combinations of phenamacril and triticonazole for the sensitivity tests of F. fujikuroi
药剂处理
Fungicide treatment浓度梯度
Concentration gradient/(μg/mL)氰烯菌酯
phenamacril (PHE)0,0.0625,0.125,0.25,0.5,1 灭菌唑
triticonazole (TRI)0,0.039,0.078,0.156,0.3125,0.625,1.25 PHE : TRI (4 : 1) 0, 0.078,0.1556,0.3125,0.625,1.25 PHE : TRI (3 : 1) 0, 0.0125,0.025,0.05,0.1,0.2,0.4 PHE : TRI (2 : 1) 0, 0.05,0.1,0.2,0.4,0.8 PHE : TRI (1 : 1) 0, 0.05,0.1,0.2,0.4,0.8 PHE : TRI (1 : 2) 0, 0.075,0.15,0.3,0.6 PHE : TRI (1 : 3) 0, 0.039,0.078,0.156,0.3125,0.625 PHE : TRI (1 : 4) 0, 0.0125,0.025,0.05,0.1,0.2,0.4 表 2 水稻恶苗病菌对灭菌唑的敏感性
Table 2. Sensitivity of F. fujikuroi to triticonazole
菌株
Strains回归方程
Regression equation相关系数
r有效抑制中浓度
EC50/(μg/mL)ZJSX-1 y = 5.6921 + 1.2144x 0.9973 0.2692 ZJSX-4 y = 5.9860 + 1.2590x 0.9982 0.1648 JSHA-6 y = 5.7927 + 0.9376x 0.9823 0.1427 JSHA-8 y = 5.3572 + 1.0823x 0.9949 0.4677 JSHA-11 y = 5.3647 + 1.0261x 0.9979 0.4411 JSHA-13 y = 5.5402 + 1.4438x 0.9934 0.4225 JSTZ-14 y = 5.7115 + 0.7734x 0.9927 0.1181 JSTZ-16 y = 5.8591 + 1.0077x 0.9957 0.1404 JSTZ-17 y = 5.1417 + 1.2248x 0.9939 0.7661 JSTZ-20 y = 6.4429 + 1.2250x 0.9934 0.0664 注:ZJSX-,菌株采自浙江省绍兴地区;JSHA-,菌株采自江苏省淮安地区;JSTZ-,菌株采自江苏省泰州地区。Note: ZJSX-, strains were collected from Shaoxing area in Zhejiang Province. JSHA-, strains were collected from Huai'an area in Jiangsu Province. JSTZ-, strains were collected from Taizhou area in Jiangsu Province. 表 3 25 g/L灭菌唑种子处理悬浮剂对水稻的安全性
Table 3. Safety of 25 g/L triticonazole FS on rice
药剂有效成分质量浓度
Mass conc. of fungicide, a.i./
(μg/mL)剂量
Dosage, a.i./
(g/100 kg (seed))发芽率
Germination rate/%株高
Height/cm鲜重
Weight/g南粳 5055
Nanjing 5055苏御糯
Suyunuo南粳 5055
Nanjing 5055苏御糯
Suyunuo南粳 5055
Nanjing 5055苏御糯
Suyunuo0 0 87.33 a 85.47 a 38.79 a 58.15 a 0.6233 a 1.0600 a 60 6 88.89 a 87.18 a 38.64 a 58.06 a 0.6067 a 1.0433 a 120 12 84.13 a 88.03 a 38.05 a 57.37 a 0.5000 a 1.0233 a 240 24 85.95 a 85.47 a 37.52 a 57.12 a 0.4833 a 1.0133 a 注:同列数据后相同小写字母表示差异不显著(P>0.05)。Note: Same lowercase indicate no significant difference among the same column data (P>0.05). 表 4 水稻恶苗病菌对氰烯菌酯的敏感性
Table 4. Sensitivity of F. fujikuroi to phenamacril
菌株
Strains回归方程
Regression equation相关系数
r有效抑制中浓度
EC50/(μg/mL)ZJSX-5 y = 6.3319 + 0.9324x 0.9997 0.0373 ZJSX-6 y = 5.9331 + 1.0859x 0.9946 0.1383 ZJSX-9 y = 6.0792 + 0.8955x 0.9932 0.0623 ZJSX-11 y = 6.1082 + 1.3201x 0.9932 0.1447 JSHA-13 y = 6.3157 + 1.2705x 0.9984 0.0921 JSHA-16 y = 6.4327 + 1.2801x 0.9991 0.0076 JSTZ-17 y = 5.9844 + 1.0193x 0.9943 0.1082 JSTZ-18 y = 5.6939 + 1.1958x 0.9932 0.2629 JSTZ-21 y = 6.3412 + 1.2273x 0.9966 0.0807 JSTZ-22 y = 6.3151 + 0.8375x 0.9946 0.0269 JSTZ-28 y = 6.3159 + 1.4315x 0.9903 0.1204 注:ZJSX-,菌株采自浙江省绍兴地区;JSHA-,菌株采自江苏省淮安地区;JSTZ-,菌株采自江苏省泰州地区。Note: ZJSX-, strains were collected from Shaoxing area in Zhejiang Province. JSHA-, strains were collected from Huai'an area in Jiangsu Province. JSTZ-, strains were collected from Taizhou area in Jiangsu Province. 表 5 水稻恶苗病菌对氰烯菌酯和灭菌唑各复配 药剂的敏感性
Table 5. Sensitivity of F. fujikuroi to the combinations of phenamacril and triticonazole
药剂处理
Fungicide treatment回归方程
Regression equation相关
系数
r有效抑制中
浓度
EC50/
(μg/mL)增效比
SR氰烯菌酯
phenamacril (PHE)y = 7.8179 + 3.6309x 0.9914 0.1675 — 灭菌唑
triticonazole (TRI)y = 5.8103 + 1.1127x 0.9995 0.1870 — PHE: TRI (1 : 1) y = 6.3191 + 1.9450x 0.9991 0.2098 0.8423 PHE: TRI (2 : 1) y = 6.3484 + 1.7800x 0.9922 0.1748 0.9927 PHE: TRI (3 : 1) y = 6.6721 + 2.0427x 0.9999 0.1525 1.1278 PHE: RI (4 : 1) y = 6.5667 + 1.8593x 0.9851 0.1437 1.1905 PHE: TRI (1 : 2) y = 6.1903 + 1.6405x 0.9944 0.1881 0.9570 PHE: TRI (1 : 3) y = 5.9124 + 1.1673x 0.9983 0.1653 1.0993 PHE: TRI (1 : 4) y = 6.2109 + 1.5042x 0.9847 0.1567 1.1662 -
[1] JESTOI M. Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: areview[J]. Crit Rev Food Sci Nutr, 2008, 48(1): 21-49. doi: 10.1080/10408390601062021 [2] PICCO A M, LORENZ E, RODOLFZ M, et al. A multi-location mycological survey on some Italian rice varieties during the crop season [Oryza sativa L.][J]. Atti Delle Giornate Fitopatologiche (Italy), 2002, 2: 487-488. [3] NELSON P E, DIGNANI M C, ANAISSIE E J. Taxonomy, biology, and clinical aspects of Fusarium species[J]. Clin Microbiol Rev, 1994, 7(4): 479-504. doi: 10.1128/CMR.7.4.479 [4] 陈宏州, 杨红福, 饶鸣帅, 等. 水稻恶苗病防治药剂效果评价[J]. 中国农学通报, 2018, 34(33): 140-146. doi: 10.11924/j.issn.1000-6850.casb18010047CHEN H Z, YANG H F, RAO M S, et al. Efficacy evaluation of fungicides for rice bakanae disease[J]. Chin Agric Sci Bull, 2018, 34(33): 140-146. doi: 10.11924/j.issn.1000-6850.casb18010047 [5] 陈宏州, 杨红福, 姚克兵, 等. 藤仓赤霉菌的抗药性及对不同杀菌剂敏感性的相关分析[J]. 中国农学通报, 2017, 33(33): 135-141. doi: 10.11924/j.issn.1000-6850.casb17020049CHEN H Z, YANG H F, YAO K B, et al. Drug resistance of Gibberella fujikuroi and correlation analysis of its sensitivity to different fungicides[J]. Chin Agric Sci Bull, 2017, 33(33): 135-141. doi: 10.11924/j.issn.1000-6850.casb17020049 [6] BEIGEL C, CHARNAY M P, BARRIUSO E. Degradation of formulated and unformulated triticonazole fungicide in soil: effect of application rate[J]. Soil Biol Biochem, 1999, 31(4): 525-534. doi: 10.1016/S0038-0717(98)00127-8 [7] BEIGEL C, DI PIETRO L. Transport of triticonazole in homogeneous soil columns influence of nonequilibrium sorption[J]. Soil Sci Soc Am J, 1999, 63(5): 1077-1086. doi: 10.2136/sssaj1999.6351077x [8] 李恒奎, 周明国. 氰烯菌酯对禾谷镰孢菌的生物活性及其内吸输导性研究[J]. 农药学学报, 2006, 8(1): 30-35. doi: 10.3321/j.issn:1008-7303.2006.01.006LI H K, ZHOU M G. Studies on the biological activity of JS399-19 against Fusarium graminearum and its systemic translocation[J]. Chin J Pestic Sci, 2006, 8(1): 30-35. doi: 10.3321/j.issn:1008-7303.2006.01.006 [9] 沈迎春. 氰烯菌酯对串珠镰孢的毒力及对水稻恶苗病防治效果[D]. 南京: 南京农业大学, 2007.SHEN Y C. Bioactivity inhibiting Fusarium moniliforme and efficacy controlling rice bakanae disease of fungicide JS399-19[D]. Nanjing: Nanjing Agricultural University, 2007. [10] WU J Y, SUN Y N, ZHOU X J, et al. A new mutation genotype of K218T in Myosin-5 confers resistance to phenamacril in rice bakanae disease in the field[J]. Plant Dis, 2020, 104(4): 1151-1157. doi: 10.1094/PDIS-05-19-1031-RE [11] FORCELINI B B, SEIJO T E, AMIRI A, et al. Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone-outside inhibitor fungicides[J]. Plant Dis, 2016, 100(10): 2050-2056. doi: 10.1094/PDIS-01-16-0118-RE [12] 农药室内生物测定试验准则 杀菌剂第 6 部分: 混配的联合作用测定: NY/T 1156.6—2006[S]. 北京: 中国农业出版社, 2006.Pesticides guidelines for laboratory bioactivity tests Part 6: determining combined action of fungicide mixtures: NY/T 1156.6—2006[S]. Beijing: China Agriculture Press, 2006. [13] PIOMBO E, BOSIO P, ACQUADRO A, et al. Different phenotypes, similar genomes: three newly sequenced Fusarium fujikuroi strains induce different symptoms in rice depending on temperature[J]. Phytopathology, 2020, 110(3): 656-665. doi: 10.1094/PHYTO-09-19-0359-R [14] CARTER L L A, LESLIE J F, WEBSTER R K. Population structure of Fusarium fujikuroi from California rice and water grass[J]. Phytopathology, 2008, 98(9): 992-998. doi: 10.1094/PHYTO-98-9-0992 [15] IRIE K. Methods for detection of benomyl resistant strains of Gibberella fujikuroi (bakanae disease fungus)[J]. Plant Protection (Japan), 1988, 42: 326-330. [16] 杨红福, 吉沐祥, 姚克兵, 等. 水稻恶苗病菌对咪鲜胺的抗性研究及治理[J]. 江西农业学报, 2013, 25(6): 94-96. doi: 10.3969/j.issn.1001-8581.2013.06.027YANG H F, JI M X, YAO K B, et al. Study on resistance of Fusarium monilifore to prochloraz and its management[J]. Acta Agric Jiangxi, 2013, 25(6): 94-96. doi: 10.3969/j.issn.1001-8581.2013.06.027 [17] ZHANG Y, MAO C X, ZHAI X Y, et al. Mutation in cyp51b and overexpression of cyp51a and cyp51b confer multiple resistant to DMIs fungicide prochloraz in Fusarium fujikuroi[J]. Pest Manag Sci, 2021, 77(2): 824-833. doi: 10.1002/ps.6085 [18] 刘永锋, 陈志谊, 周保华, 等. 江苏省部分稻区恶苗病菌对水稻浸种剂的抗药性检测[J]. 江苏农业学报, 2002, 18(3): 190-192. doi: 10.3969/j.issn.1000-4440.2002.03.014LIU Y F, CHEN Z Y, ZHOU B H, et al. Monitoring for resistance of Fusarium monilifome sheld to rice seed dressing agent in part area of Jiangsu Province[J]. Jiangsu J Agric Sci, 2002, 18(3): 190-192. doi: 10.3969/j.issn.1000-4440.2002.03.014 [19] 陈夕军, 卢国新, 童蕴慧, 等. 水稻恶苗病菌对三种浸种剂的抗性及抗药菌株的竞争力[J]. 植物保护学报, 2007, 34(4): 425-430. doi: 10.3321/j.issn:0577-7518.2007.04.018CHEN X J, LU G X, TONG Y H, et al. Resistance of Fusarium moniliforme rice bakanae disease pathogen to 3 fungicides for seed-treatment and competition ability of resistant strains[J]. Acta Phytophylacica Sin, 2007, 34(4): 425-430. doi: 10.3321/j.issn:0577-7518.2007.04.018 [20] 郑睿, 聂亚锋, 于俊杰, 等. 江苏省水稻恶苗病菌对咪鲜胺和氰烯菌酯的敏感性[J]. 农药学学报, 2014, 16(6): 693-698. doi: 10.3969/j.issn.1008-7303.2014.06.10ZHENG R, NIE Y F, YU J J, et al. Sensitivity of Fusarium fujikuroi to prochloraz and JS399-19 in Jiangsu Province[J]. Chin J Pestic Sci, 2014, 16(6): 693-698. doi: 10.3969/j.issn.1008-7303.2014.06.10 [21] 刁亚梅, 倪珏萍, 马亚芳, 等. 创制杀菌剂氰烯菌酯的应用研究[J]. 植物保护, 2007, 33(4): 121-123. doi: 10.3969/j.issn.0529-1542.2007.04.035DIAO Y M, NI J P, MA Y F, et al. Study on the application of the created fungicide JS399-19[J]. Plant Prot, 2007, 33(4): 121-123. doi: 10.3969/j.issn.0529-1542.2007.04.035 [22] HOU Y P, QU X P, MAO X W, et al. Resistance mechanism of Fusarium fujikuroi to phenamacril in the field[J]. Pest Manag Sci, 2018, 74(3): 607-616. doi: 10.1002/ps.4742 [23] 张智慧, 金倩, 王夏雯, 等. 水稻藤仓镰孢菌对氰烯菌酯的抗药性分析[J]. 北方农业学报, 2020, 48(6): 81-86. doi: 10.12190/j.issn.2096-1197.2020.06.13ZHANG Z H, JIN Q, WANG X W, et al. Research on the resistance of Fusarium fujikuroi in rice to phenamacril[J]. J North Agric, 2020, 48(6): 81-86. doi: 10.12190/j.issn.2096-1197.2020.06.13 -